Classical solutions and stability results for Stokesian Hele-Shaw flows

نویسندگان

  • JOACHIM ESCHER
  • BOGDAN-VASILE MATIOC
چکیده

In this paper we study a mathematical model for the motion of a Stokesian fluid in a Hele-Shaw cell surrounded by a gas at uniform pressure. The model is based on a non-Newtonian version of Darcy’s law for the bulk fluid, as suggested in [9, 12]. Besides a general existence and uniqueness result for classical solutions, it is also shown that classical solutions exist globally and tend to circles exponentially fast, provided the initial data is sufficiently close to a circle. Finally, our analysis discloses the influence of surface tension and the effective viscosity on the rate of convergence. Mathematics Subject Classification (2010): 35K55 (primary); 35J65, 35R35, 42A45, 76A05 (secondary).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A moving boundary problem for periodic Stokesian Hele–Shaw flows

This paper is concerned with the motion of an incompressible, viscous fluid in a Hele–Shaw cell. The free surface is moving under the influence of gravity and the fluid is modelled using a modified Darcy law for Stokesian fluids. We combine results from the theory of quasilinear elliptic equations, analytic semigroups and Fourier multipliers to prove existence of a unique classical solution to ...

متن کامل

Classical solutions for Hele-Shaw models with surface tension

It is shown that surface tension effects on the free boundary are regularizing for Hele-Shaw models. This implies, in particular, existence and uniqueness of classical solutions for a large class of initial data. As a consequence, we give a rigorous proof of the fact that homogeneous Hele-Shaw flows with positive surface tension are volume preserving and area shrinking.

متن کامل

Long-time behaviour of classical Hele-Shaw flows with injection near expanding balls

Long-time behaviour for the classical Hele-Shaw flow with injection in the origin is discussed. Domains that are small perturbations of balls are considered. Radially symmetric solutions are turned into stationary ones by suitable time-dependent scaling. An evolution equation for the motion of the domain is derived and linearised. Spectral properties of the linearisation and the principle of li...

متن کامل

Two-dimensional Stokes and Hele-Shaw flows with free surfaces

We discuss the application of complex variable methods to Hele-Shaw flows and twodimensional Stokes flows, both with free boundaries. We outline the theory for the former, in the case where surface tension effects at the moving boundary are ignored. We review the application of complex variable methods to Stokes flows both with and without surface tension, and we explore the parallels between t...

متن کامل

A Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities

Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn–Hilliard–Navier–Stokes model introduced by Abels, Garcke and Grün (Math. Models Methods Appl. Sci. 2012), which uses a volume averaged velocity, we derive a diffuse interface mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010